数学高考中,各部分内容大约占多少分?题型是怎样的?
1.对题意缺乏正确的理解,应做到慢审题快做题;我们是这样的 题 选择题共10个 (每个5分) 一般前几个题诗 复数 三角 ………… 但每个题的综合性都比较强,实际却很简单!一般有难度的两个选择题,一般是函数, 创新题,数列,圆锥曲线之类的(这种题一般用特殊解法,如带入法,特殊值法……) 第二题 填空题共5个 (每个5分)前四个为必修内容,一个为选修,三选一(不等式,极坐标 几何证明)难度吗有难有简单!但这也是拉开距的一个地方! 第三题 解答题,共5到,前3道一般12分,后面有13,14分的 一般有这几个题型 三角 概率 立体几何 数列 圆锥曲线 函数 一般 数列 圆锥曲线 函数 有可能作为压轴题,且难度较大(但每个难题的前两问都是可以做的,有的可得到一半以上分) 而剩下题的就是基础分 我是陕西的,其实每个省份都大同小异,觉得你现在也大可不必知道,因为上了高三,轮复习显示各个知识点的专题复习,是最苦也是最重要的! 从第二轮开始就是整体的一套一套的模拟题了,而这些模拟题的题型基本和你的高考题型不多! 希望对你有帮助!
高考立体几何函数题型分析 立体几何的高考题
高考立体几何函数题型分析 立体几何的高考题
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷2.注意直线的`设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;简便。
高三数学两道题 三角函数和立体几何
二、3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。培养空间想象力题干里面a^-(b-c)^=(2-根号3)bc中的"a^-(b-c)^"是什么意思?a和b-c有指数吗?sinAsinB=cos^(C/2)里的"cos^"有指数吗?如果有,指数是多少?
高中数学立体几何一直是数学的一大难点。因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。怎样才能学好立体几何呢?请看我的经验。高考数学大题的解题技巧及解题思想
1 要建立空间观念,提高空间想象力。解题技巧
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二4.极限思想解题步骤、数列题
1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2.一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1.搞清随机试验包含的所有基本和所求包含的基本的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方、标准公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。;
9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。
解题思想
1.函数与方程思想
2.数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
高中数学经典题型解析
5.注意计数时利用列举、树图等基本方法;高考数学抓住这6个题,数学一定140+,下面是高中数学经典题型解析,欢迎阅读。
三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;数列题
1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2.一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
概率问题
1.搞清随机试验包含的所有基本和所求包含的基本的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方、标准公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
圆锥曲线问题
3.战术上整体思路要保7分,争9分,想12分。
导数、值、不等式恒成立问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或值法。号;知单调性,求参数范围,带等号);
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。
如何突破立体几何中最值问题的难点
/[ln(b)]}如何突破立体几下面是我整理的高考数学应试的策略及答题技巧的相关内容,希望对即将考试的你有所帮助。何中最值问题的难点
1、若题中有或关键信息:相互,互不影响,已知概率等,则考或二项分布最值问题几乎涉及高中数学的各个分支 ,在代数、三角函数、立体几何、解析几何中都可以命题。在历年的高考试题中 ,既有一些基础题 ,又有一些综合题 ,甚至以难题的形式出现。在此 ,我将立体几何中的最值问题作如下分类 ,以扩大同学们的视野 ,拓展解决立体几何最值问题的能力。1距离的最值问题例 1 已知OA、OB是圆锥底面互相垂直的两条半径 ,C是母线SB的中点 ,SA =3 ,OA =1 ,则AC两点在圆锥侧面上的最短距离是 (C)A 2 3B 3 3C3 52 D2 33[解析 ]侧面展开如图 ,⌒AB=34 2π 1 =3π2∴∠CSA =π2在△SAC中 ,AC =SA2 +SC2=3 2 +(32 ) 2=3 52即AC就为最短距离。故选C。评注 :此类题得空间向平面转化 ,利用平面两点间直线段最短 ,求出符合空间绕法的最短距离。例 2 将圆心角为 1 2 0°,半径为 3 0的扇形OAB(O为圆心 )卷成一个圆锥 ,使两条半径OA、OB重合 ,则扇形中弦AB上的点到圆锥底面的最远距离是。 [解析 ]如图可知 ,M是母线OC的中点......(
数学高考中六道大题,难度分别多大?每题理想分布时间是多少?
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。数学高考中六道大题其中以三角函数,概率,立体几何为内容的大题基本上不会做压轴题,相对较容易;以函数,数列,解析几何为内容的大题经常做压轴题,相对较难。对于这五道答题,建议每道题的答题时间平均为10分钟左右。
按a^[log(a)(MN)]内容来分:三角函数,概率,立体几何,函数,数列,解析几何。
基础不同的学生对试题难易的感受不一样,基础扎实的学生如果在前面答题比较顺利,时间充裕,可以冲击几道大题;平时学习成绩一般的同学,对后几道大题,能做几问就做几问,争取拿到步骤分;平时成绩薄弱的考生,应主攻选择题和填空题,大题能做就一、三角函数或数列做几问。
前面题目都是简单的,倒数第二题无非数字烦一点,但记住公式写下去基本对的,一题确实要考智商,写不出还是放弃好,检查前面题目,因为时间会来不及。
导数,圆锥曲线最难,其他题目中等,排列组合是送分题
高考数学应试的策略及答题技巧
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。高考数学应试的策略 1、通览全卷。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先从头到尾、正面、反面浏览一遍,通览全卷不是“眼看手勿动”,一般可在不到十分钟完成四件事:
(1)填卷首、看说明、三涂两写。
(2)顺手解答、粗略分类。顺手解答那些一眼看得出结论的简单选择题、填空题,而只要解答出一两道题(称为热身运动不等式与排列组合最难拿分,解析几何计算量,(直线和园部分较为容易)不建议先看;),情绪就会迅速稳定下来,并且“旗开得胜”愉悦感还有一种增力作用,鼓舞我们去作更充分的发挥,同时,通览全卷也是克服“前面难题就攻不下,后面易题无暇顾及”的有效措施。
(3)做到三个心中有数。对全卷一共几页,一共大小几道题心中有数,防止漏做题,发现漏印题;对每道题得几分心里有数,并粗略地分配一下各题的解答时间,既注重了每道题的少丢分,更注重全卷多得分;对学科体系的分量心中有数,即大致分一下哪些属代数题,哪些属三角题、哪些属立体几何题,哪些属解析几何题,为实施“先同后异”作准备。
2、答题要领。一大二循环,一头一尾是两个小循环,各用十分钟左右,中间是一个大循环,用100分钟。
在通览全卷过程中,先做简单题的遍解答是个小循环同时把情绪稳定下来,将思考推向。
接下来的100分钟时状态的发挥或收获果实的黄金季节,我们叫做答题的大循环。在此阶段应充分发挥自己的水平,基本完成全卷,会做的都做了。在这个过程中要有全局意识,做整体把握,并执行“四先四后”“一慢一快”的方针。
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、(3)应用题中的数列问题,一般是以增长率问题出现。数列题
1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率与统计
仔细审题,正确判断随机变量的取值。
2、若题中有关键信息:已知概率且概率相等,直接求期望,实验次数多,实验具有重复性,则考重复试验(二项分布)
3、与统计相结合的概率题目解题技巧:分层抽样与性检验结合,系统抽样与频率分布直方图相结合,有“频率视为概率”则考二项分布,有“在(从)...选取...”则考古典概型或超几何分布)
2022全国新高考Ⅱ卷文科数学试题及解析
=a^[log(a)(M)]在高考结束后,很多考生都会对,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及解析,欢迎大家阅读。
所以log(a)(N)=log(b)(N)2022全国新高考Ⅱ卷文科数学试题及解析
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等数列和等比数列概念以及通项公式和求和公式。
二、立体几何
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
8.会计算在n次重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
1.导数的常规问题:
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解答题阅卷的评分原则一般是:问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
5.计算能力失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及解析相关 文章 :
★ 2022高考全国甲卷数学试题及
★ 2.注意一问有应用前面结论的意识;2022年全国乙卷高考语文真题试卷及解析(未公布)
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳
★ 2022年高考数学必考知识点总结
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与参考
★ 2022新高考Ⅱ卷选择创造未来作文12篇
高考数学大题的解题技巧都有哪些?
五、函数证明如下:与导数广东高考数学压轴题基本上包括:函数与导数;数列;圆锥曲线方程;不等式等。其中,函数思想渗透到每一个方面,可以这么说,函数占高中数学大半壁江大题解答题。做大题时,基础题型每道题的答题时间平均为10分钟左右。基础不同的学生对试题难易的感受不一样,基础扎实的学生如果在前面答题比较顺利,时间充裕,可以冲击几道大题。山。函数一般要求单调性,可以对函数求导;数列是特殊的函数,要求通项公式,前n项和;圆锥曲线方程一般涉及直线与方程,弦长,中点,对称点,可以联立方程,应用韦达定理,设而不求等方法去求解。具体问题具体分析,没有什么一种方法可以解决全部问题的!有什么不明白可以再提问!!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。