1. 首页 > 高考题库 >

2020年高考数学数列解析 高考数学数列2021

2022年全国新高考1卷数学试题及解析

数学科高考以我国的经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及解析。希望可以帮助大家。

2020年高考数学数列解析 高考数学数列20212020年高考数学数列解析 高考数学数列2021


2020年高考数学数列解析 高考数学数列2021


2020年高考数学数列解析 高考数学数列2021


全国新高考1卷数学试题

全国新高考1卷数学试题解析

高考数学复习主干1定义知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想 方法 和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与 其它 学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何第三类是弦长问题;

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及解析相关 文章 :

★ 2022高考甲卷数试卷及

★ 2022年新高考Ⅱ卷数试卷及

★ 2022高考全国甲卷数学试题及

★ 2022高考数学大题题型总结

★ 2022全国乙卷理科数及解析

★ 2022年全国乙卷高考数学(理科)试卷

★ 2022年新高考1卷语文真题及解析

★ 全国新高考一卷2022语文试题及一览

★ 2022全国新高考II卷语文试题及解析

高考数学压轴题的难点有哪些?

B.在直线qx-my+m=0上

高考数学压轴题的难点主要集中在函数(导数)、数列、不等式与圆锥曲线,尤其是数列问题更是解析:由题意知,a1=2,且ban-2n=(b-1)Sn,倍受命题者的“宠爱”:数列与不等式交汇、数列与解析几何综合,数列与函数、导数“联袂”等几乎占据了高考压轴题的“半壁江山”。主要难点将会是递推数列、不等式放缩与解析几何中的轨迹与范围问题。

2022年全国甲卷数学难不难

F(1 024)=10,有1个.

2022年高考数学科目已经结束了,很多考生都关心全国甲卷数学考试难度如何,下面我就根据大家的反馈进行分析整理,大家可以参考。

2022年全国甲卷数学难吗 根据各地同学考试后的反应来看,2022年高考数学试题整体上难度比较常规,在题目的难度设置上也比较明显。

概率题、数列题、填空题就难度较小,立体几何、选择题的7、8题就难度大一些,最难的就是选择题的两题、解析几何与倒数的一问。

试题给出部分已知条件,要求考生根据试题要求构建一个命题,给考生充分的选择空间,充分考查学生对数学本质的理解,中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象。

高考全国甲卷数学评价分析 甲卷地区考生对此次理科数学的评价,评论有点两极分化,六成认为与去年的全解析:设{an}的公为d,则d≠0.国三卷持平或略难,有人说题目看上去挺简单,实际做起来不是很顺手。

横向比较,甲卷难度甚至高于乙卷,但从历年纵向比较,难度变化相不大,但阅读量和计算量确实相较于往年有所增加。

考试题型设置上大都以常见的备考题型为主,选填难度不大,但个别题目有较大的计算量,大题中引入了新高考中常见的自由搭配条件和结论的数列题,统计考查性检验,这种题目要求快且准的计算速度,解析几何和全国乙卷类似,考查切线。

数学高考六道大题的题型

解析:由S20=100,得a1+a20=10. ∴a7+a14=10.

数学高考六道大题题型为:三角函数,概率,立体几何,函数,数列,解析几何。三角函数,概率,立体几何相对较容易。函数,数列,解析几何类经常做压轴题,相对较难。

一、三角函数题

注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变,符号看象限)时,很容易因为粗心,导致错误。

二、数列题

1、证明一个数列是等数列时,下结论时要写上以谁为首项,谁为公的等数列。

2、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

求异面直线所成的角、线面角、二面角3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2.、存在性问题、几何体的高、表面积、体积等问题时,要建系。

四、圆锥曲线问题

注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法。

高考数学知识点归纳

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有 经验 的学生来说,无疑是个困难的想选择。下面是我整理的高考数学知识点,希望能够帮助大家!

一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数

对于这部分知识重点考察三个方面:是划减与求值,,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

三、数列

四、空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计

概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……;和重复发生的概率。

六、解析几何

这部分内容说起来容易做起来难,需要掌握几类问题,类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题

同学们在的备考复习中,还应该把重点放在不等式计算的 方法 中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平 面相 交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

高考数学知识点2

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学知识点3

、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我 总结 下面五类常考的题型,包括:

类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第五类重点问题,这类题时往往觉得有思路,但是没有,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点4

(一)导数定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义

(二)导数第七、押轴题。第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高考数学知识点5

一、排列

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

①分类讨论思想F(8)=…=F(15)=3,有23个.;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高考数学知识点归纳相关 文章 :

★ 高考数学知识点归纳总结大全

★ 高考数学知识点总结归纳

★ 高考数学知识点整理

★ 高考数学知识点总结大全

★ 高考数学知识点总结大全

★ 高考数学知识点总结整理

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

新高考数学各知识点所占比?

新高考数学各知识点所占比如下:

一、分数占比

1、5分

2、三大函数5分

3、立体几何初步12分+5分

4、平面几何初步5分+12分

5、算法初步5分

6、统解析:依题意,F(1)=0,计5分

7、概率 5分+12分

8、三角函数恒等变换5分+5分+12分

9、平面向量5分

10、解三角形5分+12分

11、数列5分+12分

12、不等式5分+12分

13、常用逻辑用语5分

14、圆锥曲线与方程5分+12分

15、空间向量与立体几何5分+12分

16、导数及应用5分+12分

17、推理与证明12分

18、数系扩充与复数的引入5分

19、计数原理5分

20、坐标系与参数方程10分

二、题型

1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。占总分的大半。送分题、基础题较多,以书上性质、公式的运用为主。

2、、复数:默认送数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。分题。平面向量:能建系尽量建系做。计数原理:以二次项定理与分配问题居多。统计与概率:可能会在读题上挖坑。其他:命题、各章基本概念、计算(不等式或者比大小)

3、中题会以几何或函数为主,可能会考新定义题。几何:解三角形、立体几何、解析几何。函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。

4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。难度一般都不会太大,只要严格按照题干描述一步一步做就行。

卷数学难吗

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。

2023高考数学试题总体来说并不是很难。

2023年高考数学试卷特点:

1、解得q=1(舍去),或q=-12.坚持对主干知识的考查

卷基于课标,坚持突出对主干知识的考查,重点考查了函数导数与不等式、三角函数与解三角形、平面解析几何、立体几何、统计概率、数列等主干知识,充分体现了对数学知识考查的基础性和全面性。

2、坚持对思想方法的考查

卷从数学学科整体意义和思想价值的高度立意,坚持对数学基本思想方法的考查。通过多题、多角度去考查数形结合、函数与方程、化归与转化、分类讨论和统计等思想方法。

3、坚持对数学素养的考查

卷延续已有命题理念,守正创新,坚持以素养立意。通过设计现实性和综合性问题,实现对数学抽象、逻辑推理、数学建模、直观想象、数算、数据分析六大素养的综合考查。

2023年高考数学试卷特点:

1、坚持立德树人

试题紧密围绕立德树人根本任务,遵循德智体美劳全面发展要求,精心撷取素材,体现数学文化的育人价值。

2、聚焦四基四能

与往年相比,试卷总体上较为平稳,突出数学主线与主干知识,点多面广,重点知识重点考查,体现了教、学、考的一致性。如:选择题的前8道题依次考查了、复数、平面向量、函数性质、二项式定理、抛物线的性质、解三角形、充分必要条件。

3、保持稳中求进

试卷在注重基础、整体稳定的同时,关注考查内容和设问方式的适度变化与创新,以能力立意,重点考查数学基本思想与方法,突出体现数学学科核心素养。如:第(13)题从命题真的角度考查了学生举例证伪的能力与意识,虽设问开放,但其涉及的三角函数知识较为基础。

2023年重庆高考数学难不难

高考数学知识点1

2023年重庆高考数学难不难介绍如下:

C.1或-12 D.-2或12[

2023重庆高考数学试题难度适中,重庆的考生结束数学考试后表示,今年的重庆高考数学试题难度还可以,难度在接受的范围内。 2023高考数学难度趋势:不会大幅提升,但也不会比2022年简单太多。

高考数学时间分配原则

对于高考数学基础比较薄弱的同学,重在保简易题。鉴于高考数学客观题部分主要是对基础知识点的考察,可以稍稍放慢速度,把时间控制在50-60分钟,力求做到准确细致,尽量保证70分的基础分不丢分。

之后的三道简易高考数学解答题每题平均花10-15分钟完成。至于后三道高考数学大题,建议先阅读完题目,根据题意把可以联想到的常考知识点写出来,例如涉及函数单调性、切线斜率的可对函数求导,圆锥曲线的设出标准方程、数列里求出首项等等。如果没有其它的思路,不要耽误太多时间,把剩下的时间倒回去检查前面的题目。

高考数学题要认真仔细对于一道具体的习题,解题时最重要的环节是审题。审题的步是读题,这是获取信息量和思考的过程。所以,在高考数学实际解题时,应特别注意,审题要认真、仔细。

2020年高考数学难度,对比以往高考数学到底难不难?

★ 2022江西高考文科数学试题及

2020年的高考数学难度对比其他年的数学题目难度,其实并不算难,首先是选择以及填空题的计算对于理科生来说并不算大,在时间上没有形成太大的拖沓。其次的话压轴题目,例如选择12,填空16,并没有太大难度,对比上一年,断臂维纳斯来说,今年的金字塔题目,是可以直接通过计算来得到的。

当然在大题上,例如今年的17题使用了数列并未使用三角函数,计算量并不算大,对比解析几何也是很好拿分。所以总体来说,今年的理科数学并不算有很大亮点,这是在高考前长的致辞已经可以了解到了,今年的高考题比较平稳,所以得话题目的话并不难。文科数学的话,稍微对于文科生来说,稍微有点麻烦,例如的话就是文科生计算能力不强,空间构型能力较弱。对于文科生的话,难度属于中上等,当然这也是高考该有的难度。

当然对比前几年的数学题,今年的数学题的事没有太多的创新,之前的的话每年的数学的,相对于下一年,上一年的题目都会显得老套,本年的题目会结合许多时事的科技以及火热建筑和历史问题而进行出题。从而从题目背景上给与同学难以理解的问题,增加题目的难度,导致大部分的同学难以联想起来知识点,从而导致本道题的失误,最重要的是通过简单的知识点,从前面对学生以及考生给予心理压力,造成后面的题目无常获得分。今年的前面的干扰题的话效果不强,并未造成预想中的小姑,或者是出题老师今年并未想用此题来进行干扰,这可能是来为了规避,今年的影响,从而减弱了今年的数学题。

2020年高考数∴{an+1}是以a1+1=3为首项,以3为公比的等比数列,学难度,对比以往高考数学来说并不是特别难,难度等级几乎一样。

比平常难。主要表现在两道题的第二问上,运算量大并且难度较高,得分点较多,比较复杂。

今年的高考数学难度其实跟以往的高考数学难度是不多的,因为高考难度都是会控制在同一水平的

但是今年上课时间比往年短呀,像我们湖北5月才正儿八经去上课

全国卷1,小于19年,大于18年

高三数学数列测试题及

∵a7=0,a8<0,∴a7+a8<0.设不成立,故S9<S5.∴C错误.

一、选择题:本大题共12小题,每小题5分,共60分.

1.在等数列{an}中,若a1+a2+a12+a13=24,则a7为( )

A.6 B.7 C.8 D.9

解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.

:A

2.若等数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公是( )

A.12 B.1 C.2 D.3

解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.

3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N),则a2 011等于( )

A.1 B.-4 C.4 D.5

解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…

故{an}是以6为周期的数列,

∴a2 011=a6×335+1=a1=1.

:A

4.设{an}是等数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )

A.d<0 B.a7=0

C.S9>S5 D.S6与S7均为Sn的值

解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0.

又S7>S8,∴a8<0.

设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.

5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为( )

A.-12 B.12

解析:设首项为a1,公比为q,

则当q=1时,S3=3a1=3a3,适合题意.

当q≠1时,a1(1-q3)1-q=3a1q2,

∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,

综上,q=1,或q=-12.

6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的项为第x项,最小项为第y项,则x+y等于( )

A.3 B.4 C.5 D.6

解析:an=5252n-2-425n-1=525n-1-252-45,

∴n=2时,an最小;n=1时,an.

此时x=1,y=2,∴x+y=3.

:A

7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N ),则该数列中相邻两项的乘积是负数的是( )

A.a21a22 B.a22a23 C.a23a24 D.a24a25

解析:∵3an+1=3an-2,

∴an+1-an=-23,即公d=-23.

∴an=a1+(n-1)d=15-23(n-1).

令an>0,即15-23(n-1)>0,解得n<23.5.

又n∈N,∴n≤23,∴a23>0,而a24<0,∴a23a24<0.

8.某工厂去年产值为a,今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )

A.1.14a B.1.15a

C.11×(1.15-1)a D.10×(1.16-1)a

解析:由已知,得每年产值构成等比数列a1=a,w

an=a(1+10%)n-1(1≤n≤6).

∴总产值为S6-a1=11×(1.15-1)a.

9.已知正数组成的等数列{an}的前20项的和为100,那么a7a14的值为( )

A.25 B.50 C.1 00 D.不存在

又a7>0,a14>0,∴a7a14≤a7+a1422=25.

:A

10.设数列{an}是首项为m,公比为q(q≠0)的等比数列,Sn是它的前n项和,对任意的n∈N,点an,S2nSn( )

A.在直线mx+qy-q=0上

C.在直线qx+my-q=0上

D.不一定在一条直线上

解析:an=mqn-1=x, ①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y, ②

由②得qn=y-1,代入①得x=mq(y-1), 即qx-my+m=0.

:B

11.将以2为首项的偶数数列,按下列分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为( )

A.n2-n B.n2+n+2

C.n2+n D.n2-n+2

解析:因为前n-1组占用了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的首项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2.

:D

12.设m∈N,log2m的整数部分用F(m)表示,则F(1)+F(2)+…+F(1 024)的值是( )

A.8 204 B.8 192

C.9 218 D.以上都不对

F(2)=F(3)=1,有2 个

F(4)=F(5)=F(6)=F(7)=2,有22个.

F(16)=…=F(31)=4,有24个.

…F(512)=…=F(1 023)=9,有29个.

故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10.

令T=1×2+2×22+3×23+…+9×29,①

则2T=1×22+2×23+…+8×29+9×210.②

①-②,得-T=2+22+23+…+29-9×210 =

2(1-29)1-2-9×210=210-2-9×210=-8×210-2,

∴T=8×210+2=8 194, m]

∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204.

:A

第Ⅱ卷 (非选择 共90分)

二、填空题:本大题共4个小题,每小题5分 ,共20分.

13.若数列{an} 满足关系a1=2,an+1=3an+2,该数 列的通项公式为__________.

解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1),

∴an+1=33n-1=3n,∴an=3n-1.

:an=3n-1

14.已知公不为零的等数列{an}中,M=anan+3,N=an+1an+2,则M与N的大小关系是__________.

M-N=an(an+3d)-[(an+d)(an+2d)]

=an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N.

:M<N

15.在数列{an}中,a1=6,且对任意大于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________.

∴an-an-1=6,即数列{an}为等数列.

∴an=a1+6(n-1)=6+6(n-1)=6n,

∴an=6n2.

∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1

∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1.

16.观察下表:

12 3 4

3 4 5 6 7

4 5 6 7 8 1.计数原理知识点9 10

…则第__________行的各数之和等于2 0092.

解析:设第n行的各数之和等于2 0092,

则此行是一个首项a1=n,项数为2n-1,公为1的等数列.

故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092, 解得n=1 005.

:1 005

三、解答题:本大题共6小题,共70分.

17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N),令bn=an-2.

(1)求证:{bn}是等比数列,并求bn;

(2)求通项an并求{an}的前n项和Sn.

解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12,

∴{bn}是等比数列.

∵b1=a1-2=-32,

∴bn=b1qn-1=-32×12n-1=-32n.

(2)an=bn+2=-32n+2,

Sn=a1+a2+…+an

=-32+2+-322+2+-323+2+…+-32n+2

18.(12分)若数列{an}的前n项和Sn=2n.

(1)求{an}的通项公式;

(2)若数列{bn}满足b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n项和Tn.

解析:(1)由题意Sn=2n,

得Sn-1=2n-1(n≥2),

两式相减,得an=2n-2n-1=2n-1(n≥2).

当n=1时,21-1=1≠S1=a1=2.

∴an=2 (n=1),2n-1 (n≥2).

(2)∵bn+1=bn+(2n-1),

∴b2-b1=1,

b3-b2=3,

b4-b3=5,

…bn-bn-1=2n-3.

以上各式相加,得

bn-b1=1+3+5+…+(2n-3)

=(n-1)(1+2n-3)2=(n-1)2.

∵b1=-1,∴bn=n2-2n,

∴cn=-2 (n=1),(n-2)×2n-1 (n≥2),

∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1,

∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n.

∴-Tn=2+22+23+…+2n-1-(n-2)×2n

=2(1-2n-1)1-2-(n-2)×2n

=2n-2-(n-2)×2n

=-2-(n-3)×2n.

∴Tn=2+(n-3)×2n.

19.(12分)已知等数列{an}的前n项和为Sn,公d≠0,且S3+S5=50,a1,a4,a13成等比数列.

(1)求数列{an}的通项公式;

(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式.

解析:(1)依题意,得

∴an=a1+(n-1)d=3+2(n-1)=2n+1,

即an=2n+1.

(2)由已知,得bn=a2n=2×2n+1=2n+1+1,

∴Tn=b1+b2+…+bn

=(22+1)+(23+1)+…+(2n+1+1)

=4(1-2n)1-2+n=2n+2-4+n.

20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn.

(1)证明:当b=2时,{an-n2n-1}是等比数列;

(2)求通项an. 新 课 标 第 一 网

ban+1-2n+1=(b-1)Sn+1,

两式相减,得b(an+1-an)-2n=(b-1)an+1,

即an+1=ban+2n.①

(1)当b=2时,由①知,an+1=2an+2n.

于是an+1-(n+1)2n=2an+2n-(n+1)2n

=2an-n2n-1.

又a1- 120=1≠0,

∴{an-n2n-1}是首项为1,公比为2的等比数列.

(2)当b=2时,

由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1

当b≠2时,由①得

an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n

=ban-12-b2n,

因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn.

得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2.

21.(12分)某地在抗洪抢险中接到预报,24小时后又一个超水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24小时内另筑起一道堤作为第二道防线.经计算,如果有 20辆大型翻斗车同时作业25小时,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20分钟就有一辆车到达并投入.问指挥部至少还需组织多少辆车这样陆续,才能保证24小时内完成第二道防线,请说明理由.

解析:设从现有这辆车投入工作算起,各车的工作时间依次组成数列{an},则an-an-1=-13.

所以各车的工作时间构成首项为24,公为-13的等数列,由题知,24小时内最多可抽调72辆车.

设还需组织(n-1)辆车,则

a1+a2+…+an=24n+n(n-1)2×-13≥20×25.

所以n2-145n+3 000≤0,

解得25≤n≤120,且n≤73.

所以nmin=25,n-1=24.

故至少还需组织24辆车陆续工作,才能保证在24小时内完成第二道防线.

(1)求数列{an},{bn}的通项公式;

(3)设cn=5nanPnPn+1(n≥2),求c2+c3+c4+…+cn的值.

解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b),

得y=2x+1,即L:y=2x+1.

∵P1为L的轨迹与y轴的交点,

∴P1(0,1),则a1=0,b1=1.

∵数列{an}为等数列,且公为1,

∴an=n-1(n∈N) .

代入y=2x+1,得bn=2n-1(n∈N).

(2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1).

=5n2-n-1=5n-1102-2120.

∵n∈N,

(3)当n≥2时,Pn(n-1,2n-1),

∴c2+c3+…+cn

=1-12+12-13+…+1n-1-1n=1-1n.

高考数学知识点归纳

=-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3.

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有 经验 的学生来说,无疑是个困难的想选择。下面是我整理的高考数学知识点,希望能够帮助大家!

一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数

对于这部分知识重点考察三个方面:是划减与求值,,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

三、数列

四、空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计

概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……;和重复发生的概率。

六、解析几何

这部分内容说起来容易做起来难,需要掌握几类问题,类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题

同学们在的备考复习中,还应该把重点放在不等式计算的 方法 中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平 面相 交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

高考数学知识点2

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,:6nn+1常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学知识点3

、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我 总结 下面五类常考的题型,包括:

类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第五类重点问题,这类题时往往觉得有思路,但是没有,

当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点4

(一)导数定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义

(二)导数第二定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间

高考数学知识点5

一、排列

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高考数学知识点归纳相关 文章 :

★ 高考数学知识点归纳总结大全

★ 高考数学知识点总结归纳

★ 高考数学知识点整理

★ 高考数学知识点总结大全

★ 高考数学知识点总结大全

★ 高考数学知识点总结整理

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 836084111@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息